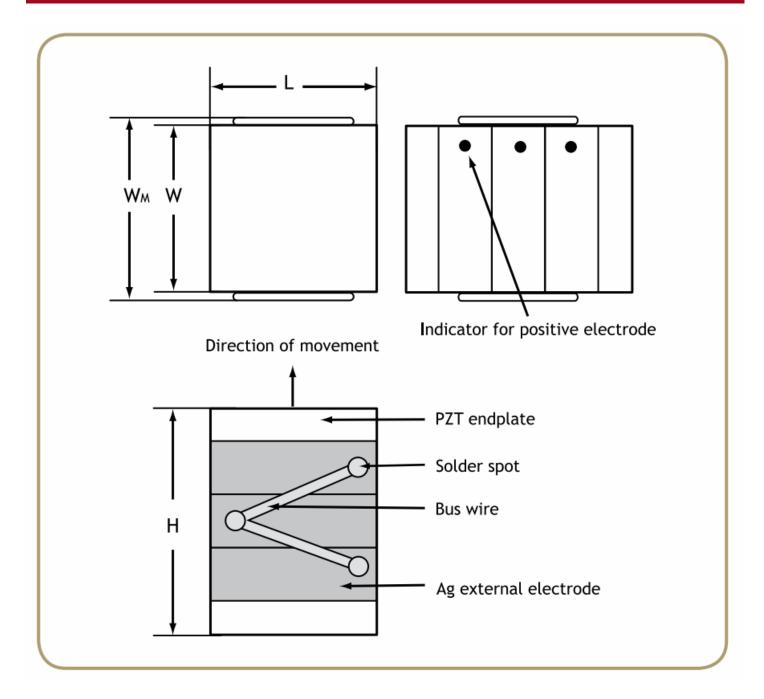

NAC2014-Hxx

Noliac plate stack actuator NAC2014-Hxx (height in mm – Hxx) is based on the multilayer actuator NAC2014 and can be stacked to match you requirements. The standard range of NAC2014-Hxx is produced in a height between 4-70 mm. The plate stack provides a stroke up to 112.2 μ m and blocking force up to 2060 N depending on the height of the stack.

SPECIFICATIONS


Attributes	Value	Tolerance
Length / outer diameter	7 mm	+0.35/-0.15 mm
Width / inner diameter	7 mm	+0.35/-0.15 mm
Max width / outer diameter max	8.8 mm	
Height	4 — 70 mm	+/-0.2 mm or 1% (whichever is largest)
Operating voltage, max.	150 V	
Free stroke, max.	$3.3-112.2~\mu m$	+/- 15%
Blocking force, max.	2060 N	+/-20%
Capacitance	340-11650 nF	+/- 15%
Stiffness	624-18 N/μm	+/-20%
Maximum operating temperature	150 °C	
Material	NCE51F	
Unloaded resonance frequency	>248 k - 16 k Hz	
Electrodes	Screen-printed Ag and soldered bus wire (option: glued connections)	

Stack options

Height	Stroke	Capacitance
4 mm	3.3 μm	340 nF
6 mm	6.6 μm	680 nF
8 mm	9.9 μm	1030 nF
10 mm	13.2 μm	1370 nF

noliac Your piezo partner

12 mm	16.5 μm	1710 nF
14 mm	19.8 μm	2050 nF
16 mm		
	23.1 μm	2390 nF
18 mm	26.4 μm	2740 nF
20 mm	29.7 μm	3080 nF
22 mm	33 μm	3420 nF
24 mm	36.3 μm	3760 nF
26 mm	39.6 μm	4100 nF
28 mm	42.9 μm	4450 nF
30 mm	46.2 μm	4790 nF
32 mm	49.5 μm	5130 nF
34 mm	52.8 μm	5470 nF
36 mm	56.1 μm	5810 nF
38 mm	59.4 μm	6160 nF
40 mm	62.7 μm	6500 nF
42 mm	66 μm	6840 nF
44 mm	69.3 μm	7180 nF
46 mm	72.6 μm	7520 nF
48 mm	75.9 μm	7870 nF
50 mm	79.2 μm	8210 nF
52 mm	82.5 μm	8550 nF
54 mm	85.8 μm	8890 nF
56 mm	89.1 μm	9230 nF
58 mm	92.4 μm	9580 nF
60 mm	95.7 μm	9920 nF
62 mm	99 μm	10260 nF
64 mm	102.3 μm	10600 nF
66 mm	105.6 μm	10940 nF
68 mm	108.9 μm	11290 nF
70 mm	112.2 µm	11630 nF
	•	

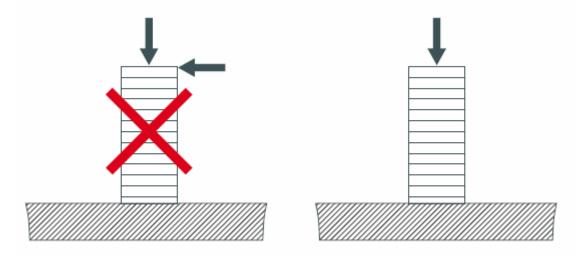
MOUNT AND CONNECT

Mounting

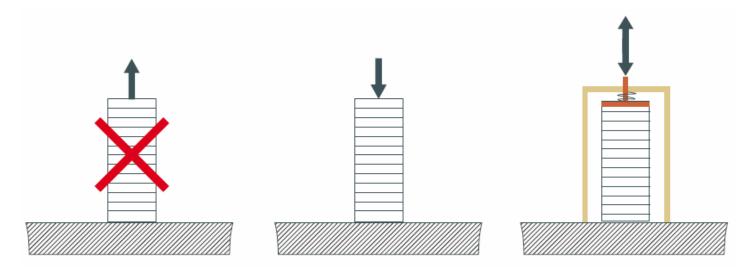
The actuators are usually grinded on top and bottom surfaces (perpendicular to the direction of expansion) in order to obtain parallel surfaces for mounting. The actuators may be mounted either by mechanical clamping or gluing.

Avoiding short circuit can either be achieved by:

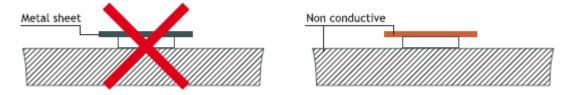
- Adding Kapton foil on the metallic surfaces.
- Having inactive ceramic plates between the actuator and the metal plate.
- Stacked actuators are manufactured with top and bottom insulating ceramic end-plates.

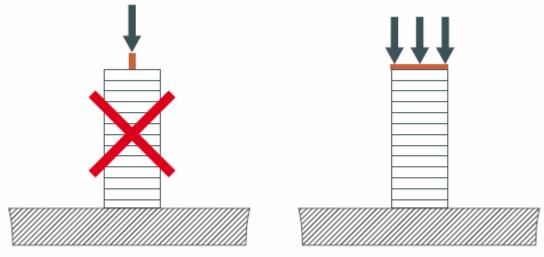

If glued, it is important to ensure a very thin glue line between the actuator and the substrate. It is recommended that a presapplied during the curing process.

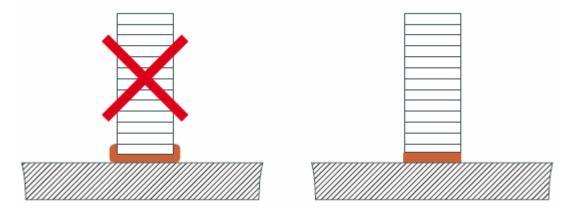
To avoid significant loss of performance, the mounting of the actuators should avoid mechanical clamping and/or gluing on the actuator.


During manufacturing or handling, minor chips on the end-plates can appear. Minor chips cannot be avoided, but such chips performance.

Electrical connection


The actuators may only be stressed axially. Tilting and shearing forces must be avoided.


The actuators without preload are sensitive to pulling forces. It is recommended to apply a pre-load in order to optimize the performances of the actuators.


For linear actuators it is recommended not to use a metal plate on top and bottom in order to avoid short circuit.

The force must be applied on the full surface of the actuator in order to assure a good load distribution.

Epoxy glues are well suited for gluing piezoceramics.

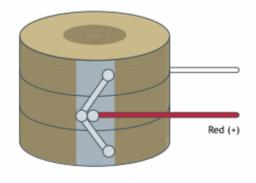
WIRES

When you order actuators from Noliac, you can have wires fitted to save time and money. However, you should consider these parameters, when you select a wire for connection:

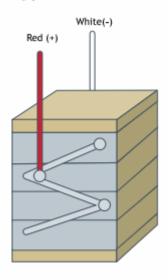
- Operation voltageIntensity of current
- Operating temperature
- Environment for example vacuum

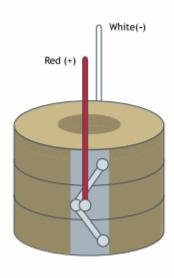
We recommend Teflon wires

Teflon wires can stand temperatures above 200 °C, whereas PVC wires only resist temperatures up to 80 ^oC. In tough operating conditions or in vacuum, it is recommended always to use Teflon isolated wire to guarantee the proper performance of PZT-elements.


Wire thickness (AWG)

The wire thickness (AWG) is determined by the current that has to be transmitted to and from the PZT-element. The required current is determined by the capacitance of the PZT-element, the maximum driving frequency and the maximum voltage Up-p.


	Option A01	Option A02	Option C
Туре	28 AWG Teflon	28 AWG Teflon	Custom
Length	200 +/- 10mm	200 +/- 10mm	To be defined
Position	Middle of the actuator	Middle of the actuator	To be defined
Direction	Perpendicular to the height	Toward top	To be defined


Type A01

Type A02

